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Abstract. We examine the limitations of the data analysis scheme for annual modulations as a signature
of WIMP direct detection. The consequences for existing and planned experiments are pointed out. These
include determinations of optimum recoil energy regions to be analyzed for modulations and the minimum
target mass needed to detect them. Calculations for 23Na, nat. Ge, and 129Xe as example nuclei have been
performed.

PACS. 95.35 Dark Matter

1 Introduction

Direct detection experiments looking for WIMPs (Weakly
Interacting Massive Particles) as constituents of the dark
matter in our galaxy can follow two different search strate-
gies: First (and usually done up to now), experiments can
give limits for cross sections of unknown WIMPs as func-
tion of their mass [1–3].

Second, experiments can look for a distinctive WIMP
signature, e.g. modulations of the supposed WIMP–
spectrum in time. Most prominent is the annual modu-
lation mechanism caused by the movement of the earth
around the Sun [4,5]. While the Sun circulates around the
galactic center, the orbital speed of the Earth around the
Sun induces a periodic modulation of velocities of WIMPs
reaching the Earth. This modulation of kinetic energies of
WIMPs can in principle be detected and hence is a signa-
ture for WIMP direct detection. Other periodic signatures
are diurnal modulations [6,7] and annual modulations due
to the Suns gravitational focusing of WIMPs entering the
solar system [8] (these are orthogonal to the annual veloc-
ity variations). All these signatures require essentially the
same data analysis scheme, adopting different amplitudes,
frequencies and/or phases. Therefore we concentrate on
modulations induced by the annual velocity variations as
signature for WIMP detection. The limitations of the sta-
tistical data analysis scheme for detection of this signature
are the subject of this article.

The foundations for our analysis have been laid about
ten years ago [5], nowadays experiments are performed to
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find the WIMP signature [9]. We found it worthwhile to
extend the statistical analysis scheme and point out conse-
quences. The importance of WIMP signature searches to
obtain more detailed information about WIMPs is stressed
in [10].

2 Limitations of the modulation analysis

Following [5] one can analyze a time series of count rates
binned in days as consisting of two different parts (time-
dependent signal in constant noise):

D (t)− 〈B〉 = 〈S〉︸︷︷︸
const. signal

+ Sm cos(ω t)︸ ︷︷ ︸
periodic signature

, (1)

where brackets mean the average of the Poisson dis-
tributed variables, D is the count rate per day in a given
detector, ω is the inverse annual period and Sm the modu-
lation amplitude. The noise (S + B) has been subdivided
into two parts since the modulation signal is superposed
on a constant WIMP–signal S and an unknown but con-
stant background B.

The time series is then transformed by a cosine trans-
formation and one defines a new random variable X as

X ≡
∑
i

2 cos(ω ti)D(ti), (2)

which is normal distributed with variance σ2(X) and sum-
mation is over days. One then defines the modulation sig-
nificance random variable R ≡ X/σ(X) which is normal
distributed with zero mean for Sm = 0 and unit variance.
This procedure is similar to the Rayleigh test [11] for de-
tection of weak periodic signals buried in uniform noise.
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Fig. 1. Distributions for the normalized check variable and the modulation significance resulting from a simulation of 104

year–long experiments. From left to right with a 5% and 10% modulation, respectively. Assumed is a constant signal with 10
events per day (〈B〉 = 0). Indicated by the vertical line is the 97.5% C.L. corresponding to r0 = 2. The areas corresponding
to the errors of the first (α) and second (1 − β) kind are shown in the 5% picture which shows the normalized Y-distribution
in the top panel, the R-distribution in the lower panel. The 10% picture indicates an almost symmetric separation of the two
distributions with respect to a give confidence level like we suggest to use

Due to the knowledge of the frequency and phase of
the modulation one can define a random variable Y by
means of an orthogonal transformation of the time series
by replacing the cosine by a sine in (2). The presence of
a modulation in the time series of count rates shifts the
mean value 〈R〉 away from zero whereas the mean value
〈Y 〉 remains at zero (compare Fig. 1).

Now one can test the hypothesis H0: a periodic modu-
lation exists within the measured time series, against the
alternative H1: There is no modulation in the time series.
The confidence level for the statement: H0 is true, is [5]

C.L. =
1
2

+
1
2

erf
[
r0√

2

]
, (3)

where r0 is the result of an analysis of a given time series
D0 for R according to (2) and σ2 =

∑
i 2 〈D0(ti)〉 [5]. In

[5] some values for r0 and the corresponding confidence
levels are quoted: r0 = 1 (84%), 2 (97.5%), 3 (99.5%).

In principle, tests for a periodic signal buried in noise
do not depend on the relative magnitude of the signal
amplitude to the noise level. The point is that these tests
are limited for modulation analysis with low count rates.
The procedure to analyze time series with low count rates
has been outlined above, but we suggest a straightforward
extension of [5], as explained in the following, motivated
by experimental requirements.

The confidence level (3) applies to errors of the first
kind, α, i.e. the probability that one decides H0 to be
true when in fact there is no modulation in the data. It
has no significance for errors of the second kind, 1 − β,
i.e. the probability to decide H1 to be true while there is
a modulation hidden in the data.

In order to visualize the situation a simulation of 104

measurements (one year each) has been performed. We set
the mean signal rate 〈S〉 to 10 counts per day (cpd) and

the mean background 〈B〉 to zero. Then two different pe-
riodic signal amplitudes were chosen corresponding to 5%
and 10% modulations, respectively. The resulting distri-
butions for the normalized check variable (unit variance)
and the modulation significance are shown in Fig. 1. Once
one has chosen a confidence level and the corresponding
r0 the errors of the first and second kind can be seen; the
area indicated as α to the right of the cut at r0 = 2 shows
the error of the first kind. The area 1− β, left to the cut
from the R–distribution, is the error of the second kind
(Fig. 1, left picture). For example, given a 5% modulation
in a year–long measurement one would have a probability
of nearly 50% to miss the modulation with a cut at r0 = 2,
i.e. the error of the second kind.

So the problem is to clearly distinguish between the
two distributions to a given confidence level. We propose
to demand equal confidence levels for errors of the first and
second kind. Due to the symmetry of the distributions we
now get

〈R〉 = 2 r0 . (4)

Note that this proposal is pragmatic from the point of
view of designing an experiment. Following this procedure
one minimizes, e.g. to a C.L. of 97.5%, the chance to miss
the signal modulation after the tedious work of one year
continuous data taking.

3 Consequences for direct detection
experiments

The statistical limitations apply to pure counting ex-
periments, i.e. measuring total count rates, as well as
to energy–sensitive experiments, i.e. measuring a WIMP
spectrum in recoil energy bins. Modulation analysis de-
pends on the unknown properties of WIMPs, e.g. their
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Table 1. Optimum recoil energy threshold ranges for total rate modulations at which the minimum masses in Fig. 4 were
evaluated. The ranges follow from the variation of the dispersion velocity as stated in the text. The separated values given
in the table correspond to the optimum thresholds at 〈v2〉1/2 = 246(323) km/s, respectively. Zero thresholds indicate that we
calculate ideal recoil threshold energies. Their meaning is that real thresholds should be as low as possible

mW [GeV] Ethropt(
23Na) [keV] Ethropt(nat.Ge) [keV] Ethropt(

129Xe) [keV]

10 3.1;2.1 1.8;1.2 1.2;0.9
30 9.0;5.8 6.0;1.4 3.2;0.0
50 12.9;7.7 8.0;0.0 2.8;0.0
70 15.0;8.7 8.7;0.0 1.0;0.0

100 16.9;8.9 7.7;0.0 0.0;0.0
130 18.6;9.5 6.8;0.0 0.0;0.0
170 19.8;9.9 4.9;0.0 0.0;0.0
200 19.9;10.0 3.2;0.0 0.0;0.0
250 20.9;10.0 2.5;0.0 0.0;0.0
300 21.2;10.0 1.0;0.0 0.0;0.0
500 22.2;10.7 0.0;0.0 0.0;0.0

1000 22.9;10.8 0.0;0.0 0.0;0.0

mass and cross sections, which determine the expected
rates. Therefore we provide examples for some WIMP
masses and assume a testable rate of 1 cpd/kg for these
WIMPs [12]. Below we give a scaling relation to account
for more realistic scenarios (e.g. of lower count rates) but
also show two important effects (of background and lower
rates) in Fig. 4.

Another parameter is the velocity distribution of the
WIMPs in the solar vicinity. We will adopt the well–known
scenario of an isothermal halo with variations of the dis-
persion velocity 〈v2〉1/2 in the range from 246 km/s to 323
km/s, according to [13] and thereby show the influence
of this parameter. For the calculation of the WIMP dif-
ferential recoil energy spectrum we took the Bessel form
factor [14] and the truncated Maxwellian velocity distri-
bution [5]. The velocity variation due to the movement
of the earth is taken to be ±15 km/s [5].

As already noted in ref. [4,5] a general feature of the
modulation signature is the increasing modulation ampli-
tude for increasing recoil energies. This effect is due to
the exponential decreasing shape of the differential re-
coil spectrum (compare Fig. 2). It becomes most obvi-
ous near the end of two recoil energy spectra obtained for
two different WIMP velocity distributions because they
have different recoil energy endpoints. Combined with the
decreasing differential WIMP spectrum for increasing re-
coil energies one can define an optimal recoil energy re-
gion for detection of modulations in the data. These have
not been calculated so far. The optimization procedure
consists of finding the maximum integral signal combined
with a maximum modulation amplitude (for energy bin
modulations, see below). The optimal thresholds (recoil
energies), tabulated in Tab. 1, are meant to guide the de-
sign of experiments. Their definition and consequences of
’detuning’ the detectors are given below (8). Note that
these optimum thresholds are not correlated to the cross
over points for two recoil spectra taken at different times
(WIMP velocity distributions).

From an experimental point of view it is desirable
to know the approximate target mass required to find a

WIMP signature for ”reasonable” WIMP rates (current
limits are around 5 cpd/kg [9,15]). The argument for the
definition of the optimum recoil energy is as follows: The
minimum target mass, Mmin, for an experiment results as

Mmin(Ethr) =
〈Smin(Ethr)〉

Rexpect · γ(Ethr)
, (5)

where 〈Smin(E)〉 is the WIMP signal in cpd needed to
overcome the statistical limitations (Sec. 2) and γ(Ethr) is
the fraction of the total expected rate Rexpect(in cpd/kg)
above recoil threshold Ethr.

For a given target material, WIMP mass and halo ve-
locity dispersion the relative modulation amplitude δ(E)
and the relative fraction of the WIMP signal γ(E) can be
calculated [5]:

δ(E) =
∣∣∣∣Sm(E)
〈S(E)〉

∣∣∣∣ ; γ(E) =
〈S(E)〉
〈S(0)〉 . (6)
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Fig. 2. Normalized WIMP–spectra as function of the recoil
energy for the fast (top) and slow (bottom) WIMP halo sce-
nario for the example of a 60 GeV WIMP scattered on 23Na
nuclei. The diagrams show for example the low WIMP–signal
content in single keV bins as well as the general shape of a
WIMP–spectrum
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Fig. 3. The inverse mass–sensitivity (from (8)) as function of
the energy threshold for two example WIMP masses, 30 GeV
(solid lines) and 100 GeV (dashed lines). Indicated as ”slow”
are the curves obtained in the slow WIMP–halo scenario. The
others use the fast WIMP–halo. As can be seen, for heavier
WIMPs the effect of detuning from the optimum, here the
maxima of the curves, is small. The effect for light WIMPs
is shown in the text

Using (for 〈B〉 = 0) [5, 3.10]:

〈Smin(E)〉 =
2 〈R〉2
N · P

1
δ2(E)

, (7)

where P is the number of days, N the number of years
and 〈R〉 = 2 r0 (4), one can evaluate the optimum recoil
energy threshold by minimizing the mass–sensitivity

s = 1/(δ2 γ) , (8)

as function of the threshold (see Fig. 3).
Figure 2 shows normalized WIMP–spectra γ(E)/dE

for a 60 GeV WIMP scattered on 23Na nuclei in the fast
(top) and the slow (bottom) halo scenario. These curves
show the generic shape of the signal, independent from
cross sections or WIMP–halo densities. In Fig. 3 one can
study for the examples of a light (30 GeV) and heavier
(100 GeV) WIMP the effect of detuning the detector from
the optimum. For heavier WIMPs the effect is small (order
100 g higher minimum mass). For the light WIMP, min-
imum masses increase as follows for three more realistic
thresholds (slow halo scenario): For a NaI detector with 5
keV threshold (≈15 keV recoil energy) mass bounds raise
from 8.6 kg (at optimum) to 9.6 kg. For a Germanium
detector with 5 keV threshold (≈ 20 keV) from 11.9 kg to
18.4 kg and for a Xenon detector (12 keV) from 16.9 kg to
27.3 kg. Detuning from the optimum always worsens the
mass bounds.

Regarding the analysis scheme we point out as another
result that we found spectrum modulations, i.e. modula-
tion of small energy regions of the order of some keV as
a typical detector resolution, disfavored compared to in-
tegral count rate modulations. Although the amplitude
delta can reach high values above 10% for selected energy
regions of a WIMP–spectrum (dependent on the WIMP–
mass) the gain is lost because of the low signal as shown
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Fig. 4. Minimum target mass needed for a direct detection
experiment to detect modulations as the WIMP signature
as function of the WIMP mass in GeV (dots). The assump-
tions in this picture are a zero background rate 〈B〉 = 0 and
an optimistic WIMP candidate rate of Rexpect = 1 cpd/kg
(N P = 365 days; 97.5% C.L.). To change the assumptions and
results use the scaling relation given in the text. The range of
minimum masses is due to halo velocity variations. The change
in these ranges is a form factor effect which depends on the
target nucleus mass. Changes due to a 103 cpd background
(triangles) and due to an expected rate of 0.1 cpd/kg (crosses)
are also shown

for example in Fig. 2. The minimum masses raise on av-
erage by a factor ten so this is not a minor effect. Exper-
iments analyzing a single, broad energy bin, starting at
about the optimum thresholds (WIMP–mass dependent)
will be able to find the WIMP signature long before an
experiment looking for modulation of small energy bins.

A second analysis scheme mentioned in the literature
is to correlate at least two energy bins containing the max-
imum and minimum WIMP counts twice a year [2]. Note
that this is nothing else then what the transformation in
eqn. (2) accomplishes. Every other way of ’correlating’ the
max. and min. containing bins, e.g. subtracting them, is
worse since it is not signature specific like (2). As one
knows the frequency and phase of the modulation, appli-
cation of this knowledge via (2) yields the best analysis
procedure.

Our results for the minimum mass are shown in Fig. 4
and the calculated values for Ethropt are summarized in
Tab. 1. Note that in case of ionization detectors these
threshold recoil energies first have to be scaled by the ion-
ization efficiency for the specific target material used in
an existing or planned experiment to obtain the electron
equivalent energies [1,2].

Form factors for heavy WIMPs broaden substantially
the optimum recoil energy region but, as shown in Tab. 1,
there remains a threshold at low recoil energy (idealized as
zero keV) which produces the minimum mass bound. For
heavy WIMPs a form factor produces an almost velocity
independent recoil spectrum, thus an almost flat modula-
tion amplitude for increasing recoil energies and therefore
a broad optimum recoil energy region. Therefore it turns
out that the most favorable recoil threshold energy is as
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Table 2. The linear fit parameters (δ(x) = a + b x) to obtain the relative modulation amplitude δ(Ethr) as function of recoil
threshold energy. The separated values correspond to 〈v2〉1/2 = 246(323) km/s, respectively. The valid recoil energy region for
the fit is for 23Na: 0-100 keV, nat. Ge: 0-80 keV and 129Xe: 0-30 keV. For mW = 10 GeV the valid recoil energy region for all
target masses is 0-10 keV

23Na nat.Ge 129Xe
mW [GeV] a [%] b [%/keV] a [%] b [%/keV] a [%] b [%/keV]

10 7.7;7.3 1.20;0.69 5.2;5.8 2.36;1.35 2.3;3.5 3.70;2.30
30 9.3;8.0 0.350;0.208 7.9;6.8 0.410;0.234 6.3;5.8 0.570;0.300
50 9.4;8.0 0.246;0.144 7.1;6.2 0.220;0.120 5.1;5.0 0.280;0.150
70 9.3;8.0 0.207;0.118 6.4;5.8 0.160;0.084 4.3;4.5 0.190;0.106

100 9.3;8.0 0.181;0.102 5.7;5.3 0.120;0.062 3.7;4.2 0.140;0.078
130 9.2;8.0 0.167;0.093 5.3;5.1 0.100;0.052 3.4;4.0 0.120;0.064
170 9.2;8.0 0.157;0.087 5.0;4.9 0.086;0.046 3.2;3.9 0.100;0.054
200 9.2;8.0 0.152;0.084 4.8;4.8 0.080;0.042 3.1;3.9 0.090;0.049
250 9.1;8.0 0.147;0.081 4.6;4.7 0.073;0.039 3.0;3.8 0.081;0.044
300 9.1;7.9 0.143;0.079 4.5;4.6 0.069;0.037 2.9;3.8 0.074;0.040
500 9.1;7.9 0.136;0.075 4.2;4.5 0.060;0.033 2.8;3.7 0.062;0.033

1000 9.1;7.9 0.131;0.071 4.0;4.4 0.055;0.030 2.7;3.7 0.053;0.028

low as possible (zero keV, maximum signal). For heavy
WIMPs the mass bounds in Fig. 4 become flat indepen-
dent of the target material.

We choose WIMP candidate masses mW ranging from
10 to 1000 GeV and three representative target materials
as examples for low, medium and high mass nuclei (23Na,
nat. Ge, and 129Xe). We have checked other popular target
materials with similar mass numbers, e.g. 19F, but the de-
viations from the example nuclei results (here from 23Na)
are small. The range of minimum masses due to variation
of the dispersion velocity of WIMPs in the halo is smaller
than the symbol sizes in Fig. 4. Note that we always use
ratios of calculated WIMP spectra or rates so that we do
not need to consider constant factors, e.g. the local halo
density.

Since the results in Fig. 4 are obtained with quite un-
realistic initial values like a zero background rate 〈B〉 = 0
cpd and an optimistic WIMP candidate rate ofRexpect = 1
cpd/kg (N P = 365 days; 97.5% C.L.), we give a relation
with which the results of Fig. 4 can be scaled appropri-
ately:(

m
kg

)
=

1
2

(
Mmin

kg

)
×
( 〈R〉

4

)2

×
(

365 d
N · P

)
×1 +

√
1 + 2

(
N · P
365 d

)(
4
〈R〉

)2

δ2 ×
( 〈B〉

cpd

)
×
(

1 cpd/kg
Rexpect

)
. (9)

In a certain recoil energy region the relative modulation
amplitude δ shows a strict linear rise as function of the
recoil threshold energy. We fitted the curves in the valid
energy region according to δ(x) = a + b x and tabulated
the parameters a and b in Tab. 2. Our results now can
be used to either guide the design of a new experiment or
to examine, for example, allowed background rates for a
fixed total WIMP rate in an existing experiment.

In Fig. 4 we included the effects of lowering the
WIMP–rate expectation and introduction of an integral,
flat background of 103 cpd. The influence of WIMP–rate
expectations clearly dominates as can also be seen from
9. Using a conventional WIMP dark matter detector one
is forced to build high–mass experiments of the order 1
ton or higher to reach an interesting significance level in
a reasonable time. Two such proposals have appeared so
far, one for a one ton NaI scintillator experiment [16]
and the second for a one ton Germanium experiment, the
GENIUS proposal [17,18]. Explicit experimental prob-
lems for the detection of the modulation, e.g. in the men-
tioned future experiments, like stability requirements for
the detector response or determination of possible time–
dependent background contributions (muon flux, for ex-
ample) always worsen the limitations which we worked out
above.

4 Conclusion

We conclude that the statistical limitations of the pro-
posed modulation search in direct detection experiments
are restrictive. The mass ranges shown in Fig. 4, however,
are not unrealistic even if they have to be scaled up, for
instance by a factor of one hundred.

We would like to thank V. Berezinsky for the suggestion of
reference [10] and G. Garvey for valuable comments.
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